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Generalized Analysis for a Class of Linear
Interferometric Networks—Part |: Analysis

Otto Schwelb,Senior Life Member, IEEE

Abstract—A method is introduced to simplify the analysis and all possible feedback-assisted and resonant configurations that
design of microwave and optoelectronic networks such as spectral can be devised using the above building blocks.
filters, mterferometrlc Sensors, _etc., compr_lsed of 2x 2 couplers, The approach presented here favors computational effi-
waveguides, reflectors, and mismatched interfaces. The key ele- . to the detailed vsis of the individual circuit i
ment which makes it possible to reduce topological complexity 9'ency 0 the detailed analysis of the individua CI_rCUI app '(_:a'
and rearrange a network into a chain of cascaded four-ports, is tion. However, we shall demonstrate that analytic expressions
a generalized, single-mode lumped-element 2 2 coupler with  for the scattering matrix elements can be obtained by simple
arbitrary coupling paths. As a result, one can now enumerate inspection of a cascaded circuit. It will be assumed that the
and evaluate all possible feedback-assisted and resonant conflgu-compoﬂents operate in the linear regime and support a single

rations. The emphasis is on providing a computationally efficient de. | d . ion bet th |
method of analysis applicable to a wide variety of networks, MOd€. I.€., MOUE CONVErsion or conversion between orthogona

rather than on obtaining the simplest and most transparent Polarizations is disregarded.
analytical expressions for a particular configuration. The network obtained by connecting the basic building

Index Terms—Filter circuits, interferometric networks, net- blocks, called the cascaded network, is afogr-port. Some of the
work analysis, sensors. ports of the cascaded network may be terminated or connected
to each other through feedback lines. Accordingly, in addition
to the cascaded network, we shall also consider feedback-
assisted four-ports and resonant four-ports. Feedback-assisted

ICROWAVE and optoelectronic circuits built with four-ports are those where some, but not all, of the ports of the

2 x 2 couplers, reflectors, and transmission lines @&mscaded network are either terminated with partially reflecting
building blocks are used in numerous applications such @wrrors, or connected to each other through a feedback circuit.
spectral filters [1]-[4], interferometers [5]-[9], resonatoré resonant circuit is obtained when all four ports of the
[10]-[14], and recirculating delay lines [15], [16]. Ringcascaded network are terminated with reflectors or connected
resonators, both passive and active, comprised ok 2 by feedback lines.
couplers terminated by reflecting elements and/or feedbacKkn Section Il, a generalized lumped-elemenk22 coupler
lines, have received considerable attention in the literatuse described. This is an artificial device, which is instru-
[17]-[19]. Recently, a number of optical sensor configuratiomsental in reducing a four-port circuit to a set of cascaded
constructed from these building blocks have been analyzemimponents. In Section Ill, the cascaded network, a four-
analytically [20]-[23] and experimentally [24], [25]. Theport comprised of all the interconnected building blocks, is
appropriate fabrication technology depends on operatidgscussed. Section IV deals with the feedback-assisted con-
wavelength, embedding, and size requirements. Existifigurations, while Section V addresses the seven possible
realizations use metallic waveguides, microstrip, optical fibergsonator configurations. Section VI presents several examples
surface-wave technology, and bulk optics. illustrating how the generalized coupler can simplify circuit

Scanning the literature, one sees a bewildering variety wipology. Part 1l of this paper describes numerical experiments
interferometric circuits constructed from the above buildinthat demonstrate the utility of the present method.
blocks. In the past, these circuits have been analyzed either
case by case or in groups that feature the same topology. In
this paper, a generalized lumped-elemenk 22 coupler is
introduced, which permits one to “straighten out” the intricate TWO matrix representations will be used to describe circuit
and often intractable configurations into a cascaded setmponents. The first is a scattering transfer representation
four-ports, which are then treated by transmission matrfiefined by the linear input/output relation
analysis. As an additional advantage, this regularization of the
topology allows the enumeration and systematic evaluation of

I. INTRODUCTION

Il. THE GENERALIZED 2 x 2 COUPLER

[al by ax by ]T = A[bg az by a4 ]T (1)

where A is the scattering transfer matrixy; and b; are,
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Fig. 1. Generalized lumped elementx2 2 coupler. The paths denoted by
I-Ill depict either a direct or a coupled connection between ports. (Tabl

describes the six possible coupler types.)

symmetry axis). These symmetry properties constrain the
matrix representing the coupler [27]For example, theS
matrix of a bilaterally symmetric network must satisfy the

condition

S =

o= o O

satisfy the condition

= o oo

O O =

0 0
1 0
0 S 1
0 0

= o oo

O O =

3)

o = O

o

RWhile the S matrix of a transversally symmetric four-port must

TABLE | 0 1 0 0 01 0 O
TYPES OFGENERALIZED LUMPED-ELEMENT 2 X 2 CouPLERS (ReFER TOFIG. 1) S = 1000 S 1000 (4)
T Direct C ti Coupled C ti 0 001 0 001
4ylpe 1rec (Imnec 0n ouple Honnec ion 0 0 1 0 0 0 1 0
g 111 Iil The corresponding conditions applicable in tle matrix
4 HI I representation are, respectively,
5 111 1
6 i I 0 1 0 07 10 1 0 07
-1_|1 0 0 O 1 0 0 0
A= 0 0 0 1 A 0 0 0 1 ®)
The scattering transfer representation is used to evaluate the 0 o0 1 0l 100 1 0.
performance of a network of cascaded components, wher&%, 00101 00 1 01
the scattering matrix representation is convenient because
D . 0 0 0 1 0 0 0 1
most measuring instruments provide us wiparameter data, A= 100 0 A 100 ol (6)
and group delay can be easily expressed in terms of its 010 0 010 0

elements. The wave amplitudesandb; are linearly related to

electric- and magnetic-field components (voltage and current)The A matrix representations of the six lumped-element

Of the several conventions in use [26], two are discusseddouplers are given in Appendix A. They are all unimodular.

Section Il The correspondingd matrix representations can be obtained
On occasion, e.g., when thematrix must be converted into from these, using the conversion formula

an .S matrix, it is convenient to use other scattering transfer T~ T _ ToT=\T

matrices, such as a permuted versionAfwhich we shall S — { cta DT ACTA B}

call theT matrix, or the inverse oft, which we shall callM. ! ~T'Tp

The results presented in this paper can also be formulateql\}'ﬁ

terms of these alternative representations; however, we shal

(7)

make little use of them. _|Ta Tp| _
. . . . T= = I3 All»;3
There are six conceivable configurations for a lumped- Tc Tp
element 2x 2 coupler, each having two pairs of port connec-
tion, as shown in Fig. 1. The six possible configurations are
listed in Table I. In the ordinary forward coupler, connections 1000
denoted ad’s represent direct connections between ports 1 Ty — 0010
and 3, and 2 and 4, respectivel’s are coupled connections, 0100
0 0 1

and ITII's do not exist. We shall call this a Type-1 coupler. 0

The Type-2 coupler differs from the Type 1 in that, here, g 4 ands matrices of the generalized22 couplers have
connectiondI are direct and connections | are coupled. Thugijght nonzero elements arranged in a pattern characteristic of
Type 2 obtains from Type 1 by interchanging ports 3_and the coupler. Of the nonzero elements of thematrices, only
The backward coupler, whers and IIT's represent direct o1 are distinct, whereas in the correspondisigmatrices,

and coupled connections, respectively, is called Type 3, whilgy two elements are distinct as a result of the symmetry con-
the Type-4 coupler is a backward coupler rotated B0the  giraint imposed by reciprocity. Denoting the power-coupling
plane of the paper around the center of the coupler. It can Q§officient by K and the coupler-loss coefficient hy one
obtained from a Type-3 coupler by exchanging ports 2 and &y show that for all six scattering matricést[S] = a* and

Type 5 is a forward coupler rotated by “9@round the center cig[S] = +a[vI— K + jVK].

of the coupler, as illustrated in [21, Fig. 7]. Finally, Type 6

is a backward coupler with ports 3 and 4 interchanged. A||1Note: the typographic error in the last entry of (1_0)! where thg elgments
. . - f the bottom row ofo3 are interchanged, and the missihguperscript, in-

SIX cpuplers are assqmed to be symmetric, both b”‘_ateraﬁﬁ(,ating Hermitian conjugation, in all entries in column under “Losslessness”

(vertical symmetry axis) as well as transversally (horizontal Table I, e.9.7~" = 01 T'o; should readl =" = o177 0.
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Qo————— @ For a pair of lossless mirrors, the scattering transfer matrix is
o oo —% l—i 0 0

(@ r 1
) -——= = 0 0
@ :><:® A= won 1 7 (1)

0o 0 -— 2

@ ® tz 12

(b) 0 o 2 1

Fig. 2. Uncoupled pair of (a) parallel and (b) crossed transmission lines. L to 12

where power conservation requires that

Although most interferometric circuits are fabricated with 4t =1, i=1,2. (12)

lumped element (fused) couplers, distributed parameter cou-S lice loss in a cascaded network can most easily be taken
plers can be included in the cascaded circuit. Of these, ther P y

are only two, namely, the forward and reverse coupler. Fg'rFO account _by Igmpmg it with the lOS.S of _the adjoining
éjpler. A brief discussion on the relationship between the

sake of completeness, their scattering transfer matrices g : . . .
included in Appendix A. mirror reflection and transmission coefficientandt and their

interface analogues and is given in Appendix B.

Gratings play an important role in spectral filters and
frequency selective interferometric networks. They are used as
. _ o frequency selective mirrors terminating a transmission line, or

In addition to 2x 2 couplers, the basic building blocks ofempedded in waveguides connecting two couplers, or serving
the cascaded network include a pair of uncoupled waveguidgs 5 feedback circuit. Often, two gratings are configured
that connect the couplers, a pair of partially reflecting mirrogg;ck-to-back with a narrow gap between them and used as
and a pair of interfaces, encountered when, e.g., a pair pfrapry—perot resonator integrated into the interferometric
waveguides is spliced to one side of ax22 coupler. The geyice. A simple method to simulate the effect of such gratings
scattering transfer n_1atri_x of a pair of uncoupled parallgd iy set up their transfer matrix by concatenating the
waveguides, shown in Fig. 2(a), is matrices of interfaces and uniform waveguide sections in the
order they appear in the grating. For example, shmatrix of
a grating embedded in an optical fiber, as shown in Fig. 3, is

Ill. THE CASCADED NETWORK

eI 0 0

A= 0 0 ci?2 (8) A= Afa [AaAabAbAba]QAaAaf (13)
0 0 0 e
where
whered; = (3; — joy)l;, @ = 1, 2 is the complex “electrical” 4. — %0 i—ab
length of linei, whose physical length i, and the (possibly O e o

wavelength dependent) attenuation coefficient;isGain can
be accommodated through a negative When the trans-
mission lines are crossed, as in Fig. 2(b), a transformatidt1ase delay,

appropriate to exchanging ports 3 and 4 must be applied to n; o n; R
(®). W T Ve Yy

represents the uniform sections wigh being their complex
and

A pair of lossless interfaces can be described by Aj = g (14)
o Y A L [T
'i & 0 0 7 N Ty N Ty
1 711 is the transfer matrix of the interface between dielectric media
[ characterized by refractive indices on the left andn; on
A=|TT M the right. In order to ensure that;; be unimodular, we define
. 9) It In ord ) .
o o — P normalized incident and reflected waves through the linear
T2 T2 transformation
P2 1 -
R m _ L {\/Y \/7} e (15)
] T VELY vzl g

wherep; andr; are, respectively, the reflection and transmis- 3 _

sion coefficients of théth interface. For a lossless interfacetather than through the also familiar relation

these must satisfy the power conservation condition (/2
Mo ]

b=l @
pPri=1,  i=12 (10) bl V2l —Z]| w/’H
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of the cascaded network is terminated, leaving a three port
as the resultant network, will be disregarded. The case when
two feedback-assisted three-ports are connected at their open

A ports can be treated, once again, as a cascaded network.)
: j — : : The so-called embedding network consists of circuit elements
a, b ja b _a; external to the cascaded network. The embedding network is

characterized by its own scattering matfix, as follows:
Fig. 3. A periodic grating embedded in an optical filbgr: refractive index

of the fiber.n,, n,: refractive indices of the grating regions. ag = Sgbg (20)
— Wher_eaE andbg are the column vectors of_waves leaving and
o x/l*Kl/ 9, 0@ entenng th_e embedding rjetvyork, respe_ctlvely. _
N — Optical-fiber one-port circuits, essentially composite reflec-
A ' ‘ tors, have been investigated by Urquhettal. [13], [28].
@o . O 0@ There are four possible feedback configurations, listed in
JI-K, Table ll(a), which result in a one-port or (imperfect) mirror.
a a, The complex reflection coefficient of the mirror is obtained

Fig. 4. Cascaded network example showing path transmissivities. The fifrs?m the Scatter,mg matrix of the cascaded netwstkand
coupler is Type 1, the second Type 4. rom Sg according to

I'=5;1+ Szl(S;jl — Sii)_lSil, 1=2,3,4 (21)

whereng = \/o/€o is the free-space impedance afidnd H
are the electric- and magnetic-field components in the plaWBere Sui = [S12 Si3 Su), S = [Sa Sz Su]*, and
of the interface. S;; iIs a 3 x 3 submatrix ofS. For the four cases listed in

By concatenating couplers, splices, mirrors, and transmigame II(a),. the scattering matrix of the embedding network
sion lines (waveguides), one can model a wide variety &% respectively,
microwave and optical circuits, as indicated in Section | and 1)
discussed in some detail in Section VI. The cascaded network
S0 obtained is a four-port whoskmatrix is the product of the
scattering transfer matrices of the components in the order the;g)
are connected to each other in the circuit. Once again, (7) can _ -

Sp =diag[rs 73 74]

be used to determine th® matrix of the cascaded network. 2 0 1
Interestingly, the scattering matrix of a cascaded network Sp=10 73 0
can be obtained by simple inspection. An example is given Lt 0 74

here by writing down the (1, 1), (1, 2), and (1, 3) elements 3)
of the § matrix of the network shown in Fig. 4, consisting

of a Types-1 and -4 coupler. To obtaffy;, the transmission 2t 0
coefficients of all possible paths from port 1 back to port 1 Sp=|t r 0
must be added. Thus, L0 0 7y
Sll = jQCL%CLQ\/Kl(l — Kl)(]. — KQ)G_j(et—i—eb). (17) 4)
Similarly, to obtainS; s or S13, one must sum all possible paths r2 0
from port 2 to port 1, or from port 3 to port 1, respectively. Sp= 8 7;3 t
T4

In the first case, there are two paths, therefore, L i

_ 2 e —j(8: 46, wherer; is the reflection coefficient of the mirror or feedback
Si2 = aaz(l = 2K1) vl = Koe ( : (18) circuit at porté andt is the complex transmission coefficient
whereas, in the second case, there is only one, resulting irof the feedback circuit. When the feedback circuit is a simple
) —je, transmission line of length ¢ = exp[—(«a+j3)I]. Fixed atten-

Sig = jaraz/Ko(1 — Ky)e 7% 19 yators, gratings, and Fabry—Pero[[ rfasonat)ols can be included
in ¢ as required, similarlyr; can represent the frequency-
dependent reflection coefficient of gratings attached to the

Desirable performance for interferometers and filters are afascaded circuit. The magnitude of the mirror reflectivities
ten obtained from feedback-assisted four-ports. The feedbawkst be between 0 and 1, the feedback path can have gain
can be internal, caused by a reflective element applied to aneloss.
or several of the external ports of the cascaded circuit, or itTable Il(b) lists the six possible configurations obtained
can be external, caused by a waveguide or other transmissisfien a cascaded four-port (with ports numbered, as in Fig. 1)
circuit connecting external ports. In our case, the four-port is reduced to a two-port. In Cases 1-3, two reflective elements
the cascaded network which is reduced by feedback elememsrrors) having complex reflection coefficients terminate
to either a one- or two-port circuit. (The case when one pdito of the four ports of the cascaded network. In Cases 4-6, a

IV. FEEDBACK-ASSISTED FOUR-PORTS
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TABLE 1

FEEDBACK CONFIGURATIONS

When feedback is the result of a circuit connecting two
ports (Cases 4-6), thd,. matrix corresponding t&,. can be

Case Ports terminated | Ports connected expressed through formulas similar to (22). For example, in
by mirrors by feedback line Case 4,
1 2,3 and 4 1 1
2 3 2104 A . =A, + AB(AE - AD)7 Ac (23)
3 4 2103 )
4 2 3tod whereas in Case 5,
@ A.=Ap+ A (AL — Ac) T Ap (24)
Case Ports terminated | Ports connected where A = [:? gg] and, if the feedback line is matched,
by mirrors by feedback line _rtto ' .
1 > and 4 Ap = [ o t]. These expressions have been presented else-
2 2and 3 where [29].
3 3and 4 The so-called circulating waves inside the device are also
4 Ztod of considerable interest. In Cases 1-3, these are the waves
5 2to3 L . .
6 Tt incident on, and reflected by, the external mirrors, whereas in

Cases 4-6, they are the waves circulating in the feedback loop.
The formalism presented above provides a simple expression
t%compute the complex wave amplitudes in the feedback path.
Befining the 2x 2 matrix,

U=S.'(S5"—Sp) 'S¢ (25)

(b)

feedback circuit characterized by complex transmission a
reflection coefficientst and r;, respectively, connects two
of the four ports. Bothr; and ¢ are generally functions of
frequency.

Through matrix manipulation, it can be shown that embe
ding results in a two-port scattering matrix given by

g\{hereS‘ and Sg have been given above, we obtain the
complex circulating-wave amplitude, normalized to that of the
incident amplitude, as one of the elementdofassuming the
(22) other input is zero). Thus, e.g., in Case 1, where ports 2 and 4

are terminated by mirrors having reflection coefficiertsnd
where$ = [24 gs] is a transformed version of the 4 4 74 respectively, the relative complex circulating amplitudes
scattering matrix of the cascaded netwdtkpartitioned into &€

S, = SA +SB(SEI — SD)_ISC

2 x 2 submatrices, obtained by exchanging columns and rows, b2 =Uy, a2 _ ol by = Uy,

i.e., applying permutation matrices 1 until the dangling ax ax ax

port parameters appear at the top of thandb vectors. In and

particular, for Cases 1-6 of Table II(b), in consecutive order: a4 =r4Us. (26)
1) “

Expressions for calculating the circulating-wave amplitudes in
the remaining five cases, and conditions required to obtain
2) a null in the reflected or transmitted intensities are given in
S’ = H24SH24 SE = d1ag[73 7’2] Appendix C.

The formulas given in (25), (26), and Appendix C express

S’ = HQgSHQg SE = d1ag[72 7’4]

3) ~ the relative amplitudes of the circulating waves in the feedback
§S=S5 Sg=dag[rs 74 path. When a circulating intensity is required at a location other
4) than the feedback path, e.g., in the waveguides connecting
_ vyt the couplers, one must trace the wave through a coupler. As
S =1I2381l23 Sg= [t 7’4} demonstrated at the end of Section lIl, and further examined
5) in Part 1l of this paper, this is normally a straightforward task
[30].
§ =11,,S1,, Sp= [7’3 t} Of further interest_ is the group delay suffered by the
t 7 reflected and transmitted signals. The group delay from ports
6) j to i is defined by
§=5 Sp= [7;’" fJ rii(w) = —m(%j a;;:f) 27)

where II;; is the 4 x 4 permutation matrix obtained by, nere S;; is the appropriate element &,. To facilitate
interchanging theth and;th rows and columns of the 'de”t'tycomparing the performance of circuits operating at widely

matrix. _ _ different wavelengths, we use the normalized group-delay
Note that (22) is a special case of tBé&/-port cascaded parameter

network N > 2, embedded by @n-portn < N, whereS 4,
Sg, Sc, andSp are2(N —n) x 2(N —n), 2(N —n) x 2n, € rijw) = A 1m<i 3Sij> (28)
2n x 2(N —n), and2n x 2n submatrices, respectively. A 2r

S, OA
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TABLE Il Option 4)
RESONANT CIRCUITS
Option Ports terminated | Ports connected by 0 0 0
by mirrors feedback lines S, — 0 »~» 0 O
1 1,2,3and 4 E=10 0 rg t
2 land3 2to4 .
3 1 and 4 203 0 0 & 7
4 1and?2 3to4 .
5 103,204 Option 5)
6 1to4,2t03
7 1102,3 to 4 1 0 ¢ O
where ¢ and A\ are the phase velocity and wavelength in 6 . 75’ )
vacuum or in the medium where the waves propagate. 2 4
It should be pointed out that the elements of thex 22 ;
. . . Option 6)
scattering matrix of a feedback-assisted four-port can also be
obtained by inspection, observing the properties of signal- m 0 0 #
flow graphs (Mason’s rule), as demonstrated by Dowling and 0 7 to O
MacFarlane [31]. However, ours is a computational approach Se = 0 t, 73 O
based on simple generic formulas; it is not our goal to present H 0 0 7y
closed-form expressions applicable to a variety of circuit
configurations. Option 7)
V. RESONATOR CIRCUITS ot 00
. . . i1 T 0 0
The cascaded network discussed in Section Il becomes Sg = 8 02 et
a resonator when reflectors and/or feedback lines terminate 0 0 ti 7’i

all four ports. The seven possible configurations, here called
“Options,” are listed in Table Ill. The numbering of ports of The determinant in (29) is complex valued. A null can
the cascaded network is the same as that in Fig. 1. In Optigaly be obtained when both the phase and gain conditions of
1, all four ports of the cascaded network are terminated Rysonance are satisfied. In a passive circuit, this only occurs
mirrors, in Options 2—4, two mirrors and a feedback circuiyhen there are no losses and the round-trip gain is unity. As
are used, while in Options 5-7, two separate feedback circyigses rise, e.g., as a result of coupling to an external load,
are used. the absolute value of the determinant in (29) will no longer be
The resonance condition for these seven distinct configutgso at resonance, rather it will exhibit a minimum, at a point
tions can be formulated by a single expression as follows: shifted slightly from the value of the independent variable
marking the resonance of the lossless case. The rise and the
corresponding shift of the minimum indicate that when losses
are present, the gain condition cannot be satisfied and the phase
whereS is the 4x 4 scattering matrix of the cascaded networkondition is also affected. The minima reduce to nulls when
andS is the scattering matrix of the embedding (terminatingufficient gain is injected into the circuit to compensate for
network, which, in this case, is also a ¥ 4 matrix. In the losses incurred.
particular, for Options 1-7, in the following consecutive order: Numerous resonators are configured as cascaded circuits. An

det[I — SSp] =0 (29)

Option 1) example is the multimirror Fabry—Perot resonator, an in-line
device, which can incorporate a distributed parameter coupler
Sp =diag[ry ro r3 r4] in one of its cavities. When a cascaded network is configured
as a resonator by attaching terminating networks to both sides,
Option 2) the condition of resonance can also be expressed in the form
0 0 0 det[Te +Tpl'r — 17 T4 — ' TEIR] =0 (30)
0o r 0 t
Sgp= 0 2 rs 0 whereT 4, Tg, T, andTp are the 2x 2 submatrices of
0t 0 the cascaded netwofR matrix, andl’;, andI'p are the 2x 2
reflection coefficient matrices of the left and right terminating
Option 3) circuits, respectively, i.e.,
rno 0 0 Sp=tr O (31)
. 0 I'grp
S 0 T2 t 0
FE = . . . . .
0 ¢t 7 O The feedback-assisted circuits of the previous section, or
0 0 7y even the cascaded network itself, can be resonant if there is
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at least one recirculating path in the device. A recirculating @ o 0@
path can be a standing-wave resonator, such as a Fabry—Perot o K
structure, or two mirrors attached to ports 2 and 4 of a | ]

Ly

forward coupler, or it can be a ring circuit where waves
return to their point of origin by traveling in one direction — .
only. Since resonances occur at every frequency where the I K
round-trip phase is an integral multiple of 2the free spectral
range (FSR) will be inversely proportional to the length of the
recirculating path.

The finesse depends on the FSR and bandwidth of the
resonance peak, i.e., on the losses in the path and those Tl K
coupled into the path from the external portion of the circuit. @ o— — - °®
In the class of interferometric circuits investigated here, theggy 5. Triple-coupler ring resonatok; are the power-coupling coefficients.
are often several resonant loops and, as a result, the FSRuire the physical lengths of the resonant rings.
and finesse are not uniquely defined. For example, some
configurations can have multiple resonances within the FS% )
others can exhibit two interspersed sets of FSR’s, etc. For this \K1/,/

Ly

reason, we depend on a numerical evaluation of the finesse
extracted from a selected range of the computed frequen@/
characteristics. lllustrative examples will be presented in Part
Il of this paper.

When a cascaded network has sufficient gain to overcomefitg 6. Equivalent circuit of the triple-coupler ring resonator of Fig. 5,
losses, it will start to oscillate. Since there are usually sevef&fained using Type-5 couplers.

competitive threshold conditions, the oscillation frequency will MY L )
be determined by the circuit parameters pertaining to the o oo
lowest threshold. At threshold, the existence of outgoing waves i L
does not depend on the presence of incoming waves, therefore, Pk ' . Kz Ls
(1) must have a solution fos; = 0, ¢ = 1-4. A nontrivial o Z
solution requires that
A1 Azz — AjzAz = 0. (32) @
The four equations obtained from (1) with the incident ampli- Joo Ly
tudes set to zero are solved for the relative amplitudes of the 0 o
outgoing waves. Thus, K, XKy Ly
L S
b3 . Alg ot ‘0—2—0
b A \. J .~/
b _ A (b)
b1 A

Fig. 7. Circuit equivalents of the so-called bow-tie-shaped fiber devices

bo - Ap1 Az — A3 Ay analyzed in [30]. (a) Fiber loop. (b) Fiber ring.

b X (33)
' them. Fig. 7(a) is the equivalent circuit of the bow-tie-shaped
where A = A1 Az — Az Ao optical-fiber loop, consisting of a Type-3 and -1 coupler, while
Fig. 7(b) is the equivalent circuit of the bow-tie-shaped fiber
VI. CIRCUIT EQUIVALENTS ring, consisting of a Type-4 and -1 coupler.

We shall illustrate the utility of the generalized coupler to The double-ring resonator described in [18] is also a Case-6
convert intricate network topologies into a set of cascadé@edback configuration with two cascaded Type-3 (backward)
four-ports and also show the appropriate equivalent circuigfuplers separated by two waveguides forming the cascaded
as categorized in Tables Il and Ill. network. On the other hand, both the symmetric [33] and

Referring to the double- and triple-coupler (illustrated iffonsymmetric [34] S-shaped double-coupler fiber devices de-
Fig. 5) ring resonators or channel-dropping filters, first angcribed by Ja are Case-5 feedback configurations. In the
lyzed by Coale [1], and later by Oda [4] and Urquhart [28], weymmetric S-shaped double-coupler device, the couplers of
see that these configurations can be converted into a cascdtiedcascaded network are both Type 3, whereas in the non-
network with the use of the Type-5 coupler (see Fig. 6). Symmetric variety, a forward and backward coupler make up

Both of the so-called bow-tie-shaped optical-fiber devicébe cascaded network.
analyzed by Ja [32] reduce to the Case-6 feedback configuraResonators where all four ports of the cascaded network are
tion, as shown in Fig. 7, where the cascaded network is maegeminated independently (Option 1) have been the subject of
up of two couplers with transmission linésandi, separating attention in the past [22], [35], however, the other six options
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S . T A systematic approach to treat polarization sensitive (two-
Do : o® moded) interferometric circuits is the subject of work in
\x/,'(1 \/(:”/(2 progress. A similar investigation involving_ Iumped-el_ement
RN L Ls 3 x 3 couplers has been concluded and will be submitted for
@o : ®  publication in the near future.
. J .
Fig. 8. Generic spectral filter configuratiod, is the scattering transfer APPENDIX A
matrix of a feedback-assisted cascaded network. TRANSEER MATRIX REPRESENTATION

OF COUPLER CONFIGURATIONS

have not been systematically treated. Note that Options 2 and he scattering matrix of the lumped-element forward cou-
4 are equivalent only when the cascaded network consistsPigr (Type 1) is

a single 2x 2 coupler. The same comment applies to Options 0 0 VI-KE VK
5 and 7. ]

Since concatenation of two-ports is dealt with by simply Sp =a 0 0 VK VI-K (A1)
multiplying their 2 x 2 scattering transfer matrices in the Vi—-K VK 0 0

appropriate order, the present analysis can be applied to also WE VI-K 0 0
treat systolic arrays [36] and spectral filters. An example of the
first can be seen in [28, Fig. 8], where the unit cells of the chawhere K is the power-coupling coefficient and = /1 —~v
are single Type-5 couplers embedded in Case-4 feedback. iathe loss coefficient (not to be confused with the incident
altogether different device is obtained when the Type-5 couplgve at port). The scattering matrices of the other five types
is replaced by a Type-4 coupler. A physical realization of th@re related td5|;; via similarity transformations. These reflect
unit cell of this kind of systolic array consists of a forwardhe symmetry operations performed to transform one type into
coupler assisted by Case-5 feedback (or a reverse coupler v@ieiother, as described in Section II. Thus,
Case-6 feedback). Computed results on these arrays will be LSl
given in Part Il of this paper. It
Spectral filters are often configured as shown in Fig. 8, ]
where a two-port, denoted by its scattering transfer matrix Sy = Haqll348717 1341124
]
]

N
W

[

=
2
N
=
2

A,, itself a feedback-assisted cascaded network, is placed in
one arm of a Mach—-Zehnder interferometer. Spectral filters
operating in the microwave and millimeter-wave region have
first been treated in [2] and later for optical frequency divisiofyhere II;; is the 4 x 4 permutation matrix obtained by
multiplexing (FDM) transmission systems by Oeial. [37].  interchanging theth and;jth rows and columns of the identity
Numerical examples on these and other devices, includifghtrix.

grating assisted interferometers, will be the subject of Partprom these, the scattering transfer matrices of the six types

n
Ut
[
=
&
X
=
&

= 3411245717 041154 (A2)

Il of this paper. of 2 x 2 couplers are computed as follows:
VIl. CONCLUSIONS 7”_1( 0 —j @ 0
a a

Through analys!s and illustrative examples, we haye d_em_on- 0 aw/I—K 0 jaVE
strated how readily a large class of interferometric cwcwtgm = (A3)
based on 2x 2 couplers can be treated. By introducing a —j@ 0 V1-K 0
generalized lumped-element:2 2 coupler, we were able to a a
reduce topological complexity to a set of cascaded four-ports, L O javK 0 av1—K |
the so-called cascaded network, to which the frequently used - VK T -
transfer matrix analysis method was applied. j— 0 — 0

Simple analytic formulas were presented to calculate the @ . @
transmission, reflection and time-delay characteristics of ~_ 0 javK 0 avl—K
feedback-assisted four-ports and resonator circuits employinéﬂ N 1-K VK
a cascaded network of possibly complex topology as a core. It T4 0 I 0
was shown, by way of an example, how simple it is to obtain 0 awiI—K 0 javE
the S matrix of a cascaded four-port by inspection. B (A4)

We enumerated four feedback-assisted one-port, six 1 .
feedback-assisted two-ports, and seven resonator configu- p 0 0 VK
rations that can be built with 2< 2 couplers, reflectors, 1 0 a VK
and transmission lines. Simple expressions were given P — J (A5)
compute the circulating-wave amplitudes and the time-delay Vi-K 0 —iVK 1 0
characteristics. Part Il of this paper illustrates the economy a
and the wide-range capabilities of the present method. VK 0 0 a
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ro 1 0 0 Vi_K| ie. alength of transmission line. By arbitrarily selecting the
a phase shift through this transmission line togbe- —7 /2 and
At = J 0 a —V1i-K 0 the mirror to be bilaterally symmetric, we obtain the scattering
W= UK 0 1K 1 0 transfer matrix of the mirror
a
_VI—K 0 0 a | Ay =2 [_1 71} (A12)
(A6) |7
—- 1 -
0 1-K ~ 0 wherer = 2p/(1 + p?) andt = (1 — p?)/(1 + p?). The
Ay i |-vVI—K 0 0 a corresponding scattering matrix is
ol 1 .
VK - 0 0 VI-K S,y = [7’ jt} (A13)
gt |’
.0 a —VI-K 0 |
(A7) APPENDIX C
0 —jivK 1 0 CIRCULATING-WAVE AMPLITUDES FOR
a FEEDBACK-ASSISTED FOUR-PORTS
A = 1 VK 0 0 . (A8) In this Appendix, expressions are given for the relative
VIi-K | L 0 0 —jiVK amplitudes of the circulating waves, and for the conditions
a to obtain a null in the output power at one of the open ports
0 a VK 0 in feedback-assisted cascaded circuits.

In addition to the lumped-element couplers, we also list With the U matrix defined as in (25), and with wave

the transfer matrices of the distributed parameter forward a%@pl!tUde designations shown n Fig. 1, the c.|rcu|at|ng-wave
amplitudes of Cases 2-6 are listed below. It is assumed that
backward couplers. For the forward coupler,

only port 1 is excited:

ped T 0 q*c T 0 Case 2)
0 p*e—j,ﬁgx 0 qe—j,ﬁgx
= b
A q*ejyﬁo-"’? 0 p*ej,aol‘ 0 (A9) —2 = lf?l % = 7’2[[21
_i3 0 —iBo Zl a1
0 qe IP0E pe I70E a
—3 = U11 —3 = 7’3U11 (A14)
wherep = cos(Cx) +j(AB/2¢) sin(Cx), g = j(r/¢) sin(Cx), “ “
2 is the direction of propagatiod,= /(A3/2)% + k2, Af = Case 3)
B1— 2, o = %(/31 +/32), 3; are the real propagation constants
of the coupled guidesi is the real coupling coefficient, bs as
and the star refers to conjugation. The transfer matrix of the P Uit P r3ln
distributed backward coupler is shown in (A10), at the bottom by ay
of this page, where now = cos(Cz) + j(fo/C) sin(Cz), o =l =l (A15)
— : _ T 2 L %1
q = —j(r/¢) sin(Cz), and( = /5 — K%
Case 4)
APPENDIX B b
MATRIX REPRESENTATIONS FOR AN 2 Uy @2 _ roUr1 + tUn
INTERFACE AND A MIRROR zl @
Q.
The scattering matrix and corresponding transfer matrix of a—4 =Un a—4 =tUp + 74l (AL6)
a single lossless interface are, respectively, ! !
Case 5)
1
S:{p T} and A:—[l p} (A11)
Tor Tlp 1 ba a2
. _ _ . — =Uz — =tU; +rlUs
where p is the amplitude reflection coefficient and = a1 a1
\/_1 — p_2 is the amplitud_e transmission coefficient. A thin b_3 Uy, as — r3U1, + tUsy (A17)
mirror is formed by two interfaces separated by a distance, al al
el (88/2) 0 0 gt el B8/
0 p*e—j(A,ﬁ/Q)ac qe—j(A,ﬁ/Q)ac 0
A= 0 B [N JE TR [EN 0 (A10)

qej(A,ﬁ/Q)ac 0 0 p*ej(A,ﬁ/Q)ac
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Case 6)

When the circuit configuration gives rise to a reflected S|gn
at the input port, a null in this reflected signal is obtained when

(S
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