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Generalized Analysis for a Class of Linear
Interferometric Networks—Part I: Analysis

Otto Schwelb,Senior Life Member, IEEE

Abstract—A method is introduced to simplify the analysis and
design of microwave and optoelectronic networks such as spectral
filters, interferometric sensors, etc., comprised of 2� 2 couplers,
waveguides, reflectors, and mismatched interfaces. The key ele-
ment which makes it possible to reduce topological complexity
and rearrange a network into a chain of cascaded four-ports, is
a generalized, single-mode lumped-element 2� 2 coupler with
arbitrary coupling paths. As a result, one can now enumerate
and evaluate all possible feedback-assisted and resonant configu-
rations. The emphasis is on providing a computationally efficient
method of analysis applicable to a wide variety of networks,
rather than on obtaining the simplest and most transparent
analytical expressions for a particular configuration.

Index Terms—Filter circuits, interferometric networks, net-
work analysis, sensors.

I. INTRODUCTION

M ICROWAVE and optoelectronic circuits built with
2 2 couplers, reflectors, and transmission lines as

building blocks are used in numerous applications such as
spectral filters [1]–[4], interferometers [5]–[9], resonators
[10]–[14], and recirculating delay lines [15], [16]. Ring
resonators, both passive and active, comprised of 22
couplers terminated by reflecting elements and/or feedback
lines, have received considerable attention in the literature
[17]–[19]. Recently, a number of optical sensor configurations
constructed from these building blocks have been analyzed
analytically [20]–[23] and experimentally [24], [25]. The
appropriate fabrication technology depends on operating
wavelength, embedding, and size requirements. Existing
realizations use metallic waveguides, microstrip, optical fibers,
surface-wave technology, and bulk optics.

Scanning the literature, one sees a bewildering variety of
interferometric circuits constructed from the above building
blocks. In the past, these circuits have been analyzed either
case by case or in groups that feature the same topology. In
this paper, a generalized lumped-element 22 coupler is
introduced, which permits one to “straighten out” the intricate
and often intractable configurations into a cascaded set of
four-ports, which are then treated by transmission matrix
analysis. As an additional advantage, this regularization of the
topology allows the enumeration and systematic evaluation of
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Concordia University, Montŕeal, P.Q., Canada H3G 1M8.

Publisher Item Identifier S 0018-9480(98)07248-2.

all possible feedback-assisted and resonant configurations that
can be devised using the above building blocks.

The approach presented here favors computational effi-
ciency to the detailed analysis of the individual circuit applica-
tion. However, we shall demonstrate that analytic expressions
for the scattering matrix elements can be obtained by simple
inspection of a cascaded circuit. It will be assumed that the
components operate in the linear regime and support a single
mode, i.e., mode conversion or conversion between orthogonal
polarizations is disregarded.

The network obtained by connecting the basic building
blocks, called the cascaded network, is a four-port. Some of the
ports of the cascaded network may be terminated or connected
to each other through feedback lines. Accordingly, in addition
to the cascaded network, we shall also consider feedback-
assisted four-ports and resonant four-ports. Feedback-assisted
four-ports are those where some, but not all, of the ports of the
cascaded network are either terminated with partially reflecting
mirrors, or connected to each other through a feedback circuit.
A resonant circuit is obtained when all four ports of the
cascaded network are terminated with reflectors or connected
by feedback lines.

In Section II, a generalized lumped-element 22 coupler
is described. This is an artificial device, which is instru-
mental in reducing a four-port circuit to a set of cascaded
components. In Section III, the cascaded network, a four-
port comprised of all the interconnected building blocks, is
discussed. Section IV deals with the feedback-assisted con-
figurations, while Section V addresses the seven possible
resonator configurations. Section VI presents several examples
illustrating how the generalized coupler can simplify circuit
topology. Part II of this paper describes numerical experiments
that demonstrate the utility of the present method.

II. THE GENERALIZED 2 2 COUPLER

Two matrix representations will be used to describe circuit
components. The first is a scattering transfer representation
defined by the linear input/output relation

(1)

where is the scattering transfer matrix, and are,
respectively, the incident and reflected waves at theth port, as
shown in Fig. 1, and the superscript signifies transposition.
The second representation defines the scattering matrix

(2)
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Fig. 1. Generalized lumped element 2� 2 coupler. The paths denoted by
I–III depict either a direct or a coupled connection between ports. (Table I
describes the six possible coupler types.)

TABLE I
TYPES OFGENERALIZED LUMPED-ELEMENT 2� 2 COUPLERS. (REFER TOFIG. 1)

The scattering transfer representation is used to evaluate the
performance of a network of cascaded components, whereas
the scattering matrix representation is convenient because
most measuring instruments provide us with-parameter data,
and group delay can be easily expressed in terms of its
elements. The wave amplitudesand are linearly related to
electric- and magnetic-field components (voltage and current).
Of the several conventions in use [26], two are discussed in
Section III.

On occasion, e.g., when thematrix must be converted into
an matrix, it is convenient to use other scattering transfer
matrices, such as a permuted version of, which we shall
call the matrix, or the inverse of , which we shall call .
The results presented in this paper can also be formulated in
terms of these alternative representations; however, we shall
make little use of them.

There are six conceivable configurations for a lumped-
element 2 2 coupler, each having two pairs of port connec-
tion, as shown in Fig. 1. The six possible configurations are
listed in Table I. In the ordinary forward coupler, connections
denoted as ’s represent direct connections between ports 1
and 3, and 2 and 4, respectively,’s are coupled connections,
and ’s do not exist. We shall call this a Type-1 coupler.
The Type-2 coupler differs from the Type 1 in that, here,
connections are direct and connections I are coupled. Thus,
Type 2 obtains from Type 1 by interchanging ports 3 and 4.
The backward coupler, where’s and ’s represent direct
and coupled connections, respectively, is called Type 3, while
the Type-4 coupler is a backward coupler rotated 90in the
plane of the paper around the center of the coupler. It can be
obtained from a Type-3 coupler by exchanging ports 2 and 3.
Type 5 is a forward coupler rotated by 90around the center
of the coupler, as illustrated in [21, Fig. 7]. Finally, Type 6
is a backward coupler with ports 3 and 4 interchanged. All
six couplers are assumed to be symmetric, both bilaterally
(vertical symmetry axis) as well as transversally (horizontal

symmetry axis). These symmetry properties constrain the
matrix representing the coupler [27].1 For example, the
matrix of a bilaterally symmetric network must satisfy the
condition

(3)

while the matrix of a transversally symmetric four-port must
satisfy the condition

(4)

The corresponding conditions applicable in the matrix
representation are, respectively,

(5)

and

(6)

The matrix representations of the six lumped-element
couplers are given in Appendix A. They are all unimodular.
The corresponding matrix representations can be obtained
from these, using the conversion formula

(7)

where

and

The and matrices of the generalized 22 couplers have
eight nonzero elements arranged in a pattern characteristic of
the coupler. Of the nonzero elements of thematrices, only
four are distinct, whereas in the correspondingmatrices,
only two elements are distinct as a result of the symmetry con-
straint imposed by reciprocity. Denoting the power-coupling
coefficient by and the coupler-loss coefficient by, one
can show that for all six scattering matrices and

.

1Note: the typographic error in the last entry of (10), where the elements
of the bottom row of�3 are interchanged, and the missingy superscript, in-
dicating Hermitian conjugation, in all entries in column under “Losslessness”
in Table I, e.g.,T�1

= �1T�1 should readT�1
= �1T

y
�1.
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(a)

(b)

Fig. 2. Uncoupled pair of (a) parallel and (b) crossed transmission lines.

Although most interferometric circuits are fabricated with
lumped element (fused) couplers, distributed parameter cou-
plers can be included in the cascaded circuit. Of these, there
are only two, namely, the forward and reverse coupler. For
sake of completeness, their scattering transfer matrices are
included in Appendix A.

III. T HE CASCADED NETWORK

In addition to 2 2 couplers, the basic building blocks of
the cascaded network include a pair of uncoupled waveguides
that connect the couplers, a pair of partially reflecting mirrors
and a pair of interfaces, encountered when, e.g., a pair of
waveguides is spliced to one side of a 22 coupler. The
scattering transfer matrix of a pair of uncoupled parallel
waveguides, shown in Fig. 2(a), is

(8)

where , is the complex “electrical”
length of line , whose physical length is, and the (possibly
wavelength dependent) attenuation coefficient is. Gain can
be accommodated through a negative. When the trans-
mission lines are crossed, as in Fig. 2(b), a transformation,
appropriate to exchanging ports 3 and 4 must be applied to
(8).

A pair of lossless interfaces can be described by

(9)

where and are, respectively, the reflection and transmis-
sion coefficients of theth interface. For a lossless interface,
these must satisfy the power conservation condition

(10)

For a pair of lossless mirrors, the scattering transfer matrix is

(11)

where power conservation requires that

(12)

Splice loss in a cascaded network can most easily be taken
into account by lumping it with the loss of the adjoining
coupler. A brief discussion on the relationship between the
mirror reflection and transmission coefficientsand and their
interface analogues and is given in Appendix B.

Gratings play an important role in spectral filters and
frequency selective interferometric networks. They are used as
frequency selective mirrors terminating a transmission line, or
embedded in waveguides connecting two couplers, or serving
as a feedback circuit. Often, two gratings are configured
back-to-back with a narrow gap between them and used as
a Fabry–Perot resonator integrated into the interferometric
device. A simple method to simulate the effect of such gratings
is to set up their transfer matrix by concatenating the
matrices of interfaces and uniform waveguide sections in the
order they appear in the grating. For example, thematrix of
a grating embedded in an optical fiber, as shown in Fig. 3, is

(13)

where

represents the uniform sections with being their complex
phase delay, and

(14)

is the transfer matrix of the interface between dielectric media
characterized by refractive indices on the left and on
the right. In order to ensure that be unimodular, we define
normalized incident and reflected waves through the linear
transformation

(15)

rather than through the also familiar relation

(16)
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Fig. 3. A periodic grating embedded in an optical fibernf : refractive index
of the fiber.na, nb: refractive indices of the grating regions.

Fig. 4. Cascaded network example showing path transmissivities. The first
coupler is Type 1, the second Type 4.

where is the free-space impedance andand
are the electric- and magnetic-field components in the plane
of the interface.

By concatenating couplers, splices, mirrors, and transmis-
sion lines (waveguides), one can model a wide variety of
microwave and optical circuits, as indicated in Section I and
discussed in some detail in Section VI. The cascaded network
so obtained is a four-port whosematrix is the product of the
scattering transfer matrices of the components in the order they
are connected to each other in the circuit. Once again, (7) can
be used to determine the matrix of the cascaded network.

Interestingly, the scattering matrix of a cascaded network
can be obtained by simple inspection. An example is given
here by writing down the (1, 1), (1, 2), and (1, 3) elements
of the matrix of the network shown in Fig. 4, consisting
of a Types-1 and -4 coupler. To obtain , the transmission
coefficients of all possible paths from port 1 back to port 1
must be added. Thus,

(17)

Similarly, to obtain or , one must sum all possible paths
from port 2 to port 1, or from port 3 to port 1, respectively.
In the first case, there are two paths, therefore,

(18)

whereas, in the second case, there is only one, resulting in

(19)

IV. FEEDBACK-ASSISTED FOUR-PORTS

Desirable performance for interferometers and filters are of-
ten obtained from feedback-assisted four-ports. The feedback
can be internal, caused by a reflective element applied to one
or several of the external ports of the cascaded circuit, or it
can be external, caused by a waveguide or other transmission-
circuit connecting external ports. In our case, the four-port is
the cascaded network which is reduced by feedback elements
to either a one- or two-port circuit. (The case when one port

of the cascaded network is terminated, leaving a three port
as the resultant network, will be disregarded. The case when
two feedback-assisted three-ports are connected at their open
ports can be treated, once again, as a cascaded network.)
The so-called embedding network consists of circuit elements
external to the cascaded network. The embedding network is
characterized by its own scattering matrix as follows:

(20)

where and are the column vectors of waves leaving and
entering the embedding network, respectively.

Optical-fiber one-port circuits, essentially composite reflec-
tors, have been investigated by Urquhartet al. [13], [28].
There are four possible feedback configurations, listed in
Table II(a), which result in a one-port or (imperfect) mirror.
The complex reflection coefficient of the mirror is obtained
from the scattering matrix of the cascaded network, and
from according to

(21)

where , , and
is a 3 3 submatrix of . For the four cases listed in

Table II(a), the scattering matrix of the embedding network
is, respectively,

1)

2)

3)

4)

where is the reflection coefficient of the mirror or feedback
circuit at port and is the complex transmission coefficient
of the feedback circuit. When the feedback circuit is a simple
transmission line of length, . Fixed atten-
uators, gratings, and Fabry–Perot resonators can be included
in as required, similarly can represent the frequency-
dependent reflection coefficient of gratings attached to the
cascaded circuit. The magnitude of the mirror reflectivities
must be between 0 and 1, the feedback path can have gain
or loss.

Table II(b) lists the six possible configurations obtained
when a cascaded four-port (with ports numbered, as in Fig. 1)
is reduced to a two-port. In Cases 1–3, two reflective elements
(mirrors) having complex reflection coefficients terminate
two of the four ports of the cascaded network. In Cases 4–6, a
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TABLE II
FEEDBACK CONFIGURATIONS

(a)

(b)

feedback circuit characterized by complex transmission and
reflection coefficients and , respectively, connects two
of the four ports. Both and are generally functions of
frequency.

Through matrix manipulation, it can be shown that embed-
ding results in a two-port scattering matrix given by

(22)

where is a transformed version of the 4 4
scattering matrix of the cascaded network, partitioned into
2 2 submatrices, obtained by exchanging columns and rows,
i.e., applying permutation matrices to until the dangling
port parameters appear at the top of theand vectors. In
particular, for Cases 1–6 of Table II(b), in consecutive order:

1)

2)

3)

4)

5)

6)

where is the 4 4 permutation matrix obtained by
interchanging theth and th rows and columns of the identity
matrix.

Note that (22) is a special case of the -port cascaded
network , embedded by a -port , where ,

, , and are , ,
, and submatrices, respectively.

When feedback is the result of a circuit connecting two
ports (Cases 4–6), the matrix corresponding to can be
expressed through formulas similar to (22). For example, in
Case 4,

(23)

whereas in Case 5,

(24)

where and, if the feedback line is matched,

. These expressions have been presented else-
where [29].

The so-called circulating waves inside the device are also
of considerable interest. In Cases 1–3, these are the waves
incident on, and reflected by, the external mirrors, whereas in
Cases 4–6, they are the waves circulating in the feedback loop.
The formalism presented above provides a simple expression
to compute the complex wave amplitudes in the feedback path.
Defining the 2 2 matrix,

(25)

where and have been given above, we obtain the
complex circulating-wave amplitude, normalized to that of the
incident amplitude, as one of the elements of(assuming the
other input is zero). Thus, e.g., in Case 1, where ports 2 and 4
are terminated by mirrors having reflection coefficientsand

, respectively, the relative complex circulating amplitudes
are

and

(26)

Expressions for calculating the circulating-wave amplitudes in
the remaining five cases, and conditions required to obtain
a null in the reflected or transmitted intensities are given in
Appendix C.

The formulas given in (25), (26), and Appendix C express
the relative amplitudes of the circulating waves in the feedback
path. When a circulating intensity is required at a location other
than the feedback path, e.g., in the waveguides connecting
the couplers, one must trace the wave through a coupler. As
demonstrated at the end of Section III, and further examined
in Part II of this paper, this is normally a straightforward task
[30].

Of further interest is the group delay suffered by the
reflected and transmitted signals. The group delay from ports

to is defined by

(27)

where is the appropriate element of . To facilitate
comparing the performance of circuits operating at widely
different wavelengths, we use the normalized group-delay
parameter

(28)
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TABLE III
RESONANT CIRCUITS

where and are the phase velocity and wavelength in
vacuum or in the medium where the waves propagate.

It should be pointed out that the elements of the 22
scattering matrix of a feedback-assisted four-port can also be
obtained by inspection, observing the properties of signal-
flow graphs (Mason’s rule), as demonstrated by Dowling and
MacFarlane [31]. However, ours is a computational approach
based on simple generic formulas; it is not our goal to present
closed-form expressions applicable to a variety of circuit
configurations.

V. RESONATOR CIRCUITS

The cascaded network discussed in Section III becomes
a resonator when reflectors and/or feedback lines terminate
all four ports. The seven possible configurations, here called
“Options,” are listed in Table III. The numbering of ports of
the cascaded network is the same as that in Fig. 1. In Option
1, all four ports of the cascaded network are terminated by
mirrors, in Options 2–4, two mirrors and a feedback circuit
are used, while in Options 5–7, two separate feedback circuits
are used.

The resonance condition for these seven distinct configura-
tions can be formulated by a single expression as follows:

(29)

where is the 4 4 scattering matrix of the cascaded network,
and is the scattering matrix of the embedding (terminating)
network, which, in this case, is also a 4 4 matrix. In
particular, for Options 1–7, in the following consecutive order:

Option 1)

Option 2)

Option 3)

Option 4)

Option 5)

S

Option 6)

Option 7)

The determinant in (29) is complex valued. A null can
only be obtained when both the phase and gain conditions of
resonance are satisfied. In a passive circuit, this only occurs
when there are no losses and the round-trip gain is unity. As
losses rise, e.g., as a result of coupling to an external load,
the absolute value of the determinant in (29) will no longer be
zero at resonance, rather it will exhibit a minimum, at a point
shifted slightly from the value of the independent variable
marking the resonance of the lossless case. The rise and the
corresponding shift of the minimum indicate that when losses
are present, the gain condition cannot be satisfied and the phase
condition is also affected. The minima reduce to nulls when
sufficient gain is injected into the circuit to compensate for
the losses incurred.

Numerous resonators are configured as cascaded circuits. An
example is the multimirror Fabry–Perot resonator, an in-line
device, which can incorporate a distributed parameter coupler
in one of its cavities. When a cascaded network is configured
as a resonator by attaching terminating networks to both sides,
the condition of resonance can also be expressed in the form

(30)

where , , , and are the 2 2 submatrices of
the cascaded network matrix, and and are the 2 2
reflection coefficient matrices of the left and right terminating
circuits, respectively, i.e.,

(31)

The feedback-assisted circuits of the previous section, or
even the cascaded network itself, can be resonant if there is
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at least one recirculating path in the device. A recirculating
path can be a standing-wave resonator, such as a Fabry–Perot
structure, or two mirrors attached to ports 2 and 4 of a
forward coupler, or it can be a ring circuit where waves
return to their point of origin by traveling in one direction
only. Since resonances occur at every frequency where the
round-trip phase is an integral multiple of 2, the free spectral
range (FSR) will be inversely proportional to the length of the
recirculating path.

The finesse depends on the FSR and bandwidth of the
resonance peak, i.e., on the losses in the path and those
coupled into the path from the external portion of the circuit.
In the class of interferometric circuits investigated here, there
are often several resonant loops and, as a result, the FSR
and finesse are not uniquely defined. For example, some
configurations can have multiple resonances within the FSR,
others can exhibit two interspersed sets of FSR’s, etc. For this
reason, we depend on a numerical evaluation of the finesse,
extracted from a selected range of the computed frequency
characteristics. Illustrative examples will be presented in Part
II of this paper.

When a cascaded network has sufficient gain to overcome its
losses, it will start to oscillate. Since there are usually several
competitive threshold conditions, the oscillation frequency will
be determined by the circuit parameters pertaining to the
lowest threshold. At threshold, the existence of outgoing waves
does not depend on the presence of incoming waves, therefore,
(1) must have a solution for , – . A nontrivial
solution requires that

(32)

The four equations obtained from (1) with the incident ampli-
tudes set to zero are solved for the relative amplitudes of the
outgoing waves. Thus,

(33)

where .

VI. CIRCUIT EQUIVALENTS

We shall illustrate the utility of the generalized coupler to
convert intricate network topologies into a set of cascaded
four-ports and also show the appropriate equivalent circuits,
as categorized in Tables II and III.

Referring to the double- and triple-coupler (illustrated in
Fig. 5) ring resonators or channel-dropping filters, first ana-
lyzed by Coale [1], and later by Oda [4] and Urquhart [28], we
see that these configurations can be converted into a cascaded
network with the use of the Type-5 coupler (see Fig. 6).

Both of the so-called bow-tie-shaped optical-fiber devices
analyzed by Ja [32] reduce to the Case-6 feedback configura-
tion, as shown in Fig. 7, where the cascaded network is made
up of two couplers with transmission linesand separating

Fig. 5. Triple-coupler ring resonator.Ki are the power-coupling coefficients.
Li are the physical lengths of the resonant rings.

Fig. 6. Equivalent circuit of the triple-coupler ring resonator of Fig. 5,
obtained using Type-5 couplers.

(a)

(b)

Fig. 7. Circuit equivalents of the so-called bow-tie-shaped fiber devices
analyzed in [30]. (a) Fiber loop. (b) Fiber ring.

them. Fig. 7(a) is the equivalent circuit of the bow-tie-shaped
optical-fiber loop, consisting of a Type-3 and -1 coupler, while
Fig. 7(b) is the equivalent circuit of the bow-tie-shaped fiber
ring, consisting of a Type-4 and -1 coupler.

The double-ring resonator described in [18] is also a Case-6
feedback configuration with two cascaded Type-3 (backward)
couplers separated by two waveguides forming the cascaded
network. On the other hand, both the symmetric [33] and
nonsymmetric [34] S-shaped double-coupler fiber devices de-
scribed by Ja are Case-5 feedback configurations. In the
symmetric S-shaped double-coupler device, the couplers of
the cascaded network are both Type 3, whereas in the non-
symmetric variety, a forward and backward coupler make up
the cascaded network.

Resonators where all four ports of the cascaded network are
terminated independently (Option 1) have been the subject of
attention in the past [22], [35], however, the other six options
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Fig. 8. Generic spectral filter configuration.AAA2 is the scattering transfer
matrix of a feedback-assisted cascaded network.

have not been systematically treated. Note that Options 2 and
4 are equivalent only when the cascaded network consists of
a single 2 2 coupler. The same comment applies to Options
5 and 7.

Since concatenation of two-ports is dealt with by simply
multiplying their 2 2 scattering transfer matrices in the
appropriate order, the present analysis can be applied to also
treat systolic arrays [36] and spectral filters. An example of the
first can be seen in [28, Fig. 8], where the unit cells of the chain
are single Type-5 couplers embedded in Case-4 feedback. An
altogether different device is obtained when the Type-5 coupler
is replaced by a Type-4 coupler. A physical realization of the
unit cell of this kind of systolic array consists of a forward
coupler assisted by Case-5 feedback (or a reverse coupler with
Case-6 feedback). Computed results on these arrays will be
given in Part II of this paper.

Spectral filters are often configured as shown in Fig. 8,
where a two-port, denoted by its scattering transfer matrix

, itself a feedback-assisted cascaded network, is placed in
one arm of a Mach–Zehnder interferometer. Spectral filters
operating in the microwave and millimeter-wave region have
first been treated in [2] and later for optical frequency division
multiplexing (FDM) transmission systems by Odaet al. [37].
Numerical examples on these and other devices, including
grating assisted interferometers, will be the subject of Part
II of this paper.

VII. CONCLUSIONS

Through analysis and illustrative examples, we have demon-
strated how readily a large class of interferometric circuits
based on 2 2 couplers can be treated. By introducing a
generalized lumped-element 2 2 coupler, we were able to
reduce topological complexity to a set of cascaded four-ports,
the so-called cascaded network, to which the frequently used
transfer matrix analysis method was applied.

Simple analytic formulas were presented to calculate the
transmission, reflection and time-delay characteristics of
feedback-assisted four-ports and resonator circuits employing
a cascaded network of possibly complex topology as a core. It
was shown, by way of an example, how simple it is to obtain
the matrix of a cascaded four-port by inspection.

We enumerated four feedback-assisted one-port, six
feedback-assisted two-ports, and seven resonator configu-
rations that can be built with 2 2 couplers, reflectors,
and transmission lines. Simple expressions were given to
compute the circulating-wave amplitudes and the time-delay
characteristics. Part II of this paper illustrates the economy
and the wide-range capabilities of the present method.

A systematic approach to treat polarization sensitive (two-
moded) interferometric circuits is the subject of work in
progress. A similar investigation involving lumped-element
3 3 couplers has been concluded and will be submitted for
publication in the near future.

APPENDIX A
TRANSFER MATRIX REPRESENTATION

OF COUPLER CONFIGURATIONS

The scattering matrix of the lumped-element forward cou-
pler (Type 1) is

(A1)

where is the power-coupling coefficient and
is the loss coefficient (not to be confused with, the incident
wave at port ). The scattering matrices of the other five types
are related to via similarity transformations. These reflect
the symmetry operations performed to transform one type into
another, as described in Section II. Thus,

(A2)

where is the 4 4 permutation matrix obtained by
interchanging theth and th rows and columns of the identity
matrix.

From these, the scattering transfer matrices of the six types
of 2 2 couplers are computed as follows:

(A3)

(A4)

(A5)
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(A6)

(A7)

(A8)

In addition to the lumped-element couplers, we also list
the transfer matrices of the distributed parameter forward and
backward couplers. For the forward coupler,

(A9)

where , ,
is the direction of propagation, ,

, , are the real propagation constants
of the coupled guides, is the real coupling coefficient,
and the star refers to conjugation. The transfer matrix of the
distributed backward coupler is shown in (A10), at the bottom
of this page, where now ,

, and .

APPENDIX B
MATRIX REPRESENTATIONS FOR AN

INTERFACE AND A MIRROR

The scattering matrix and corresponding transfer matrix of
a single lossless interface are, respectively,

and (A11)

where is the amplitude reflection coefficient and
is the amplitude transmission coefficient. A thin

mirror is formed by two interfaces separated by a distance,

i.e., a length of transmission line. By arbitrarily selecting the
phase shift through this transmission line to be and
the mirror to be bilaterally symmetric, we obtain the scattering
transfer matrix of the mirror

(A12)

where and ). The
corresponding scattering matrix is

(A13)

APPENDIX C
CIRCULATING-WAVE AMPLITUDES FOR

FEEDBACK-ASSISTED FOUR-PORTS

In this Appendix, expressions are given for the relative
amplitudes of the circulating waves, and for the conditions
to obtain a null in the output power at one of the open ports
in feedback-assisted cascaded circuits.

With the matrix defined as in (25), and with wave
amplitude designations shown in Fig. 1, the circulating-wave
amplitudes of Cases 2–6 are listed below. It is assumed that
only port 1 is excited:

Case 2)

(A14)

Case 3)

(A15)

Case 4)

(A16)

Case 5)

(A17)

(A10)
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Case 6)

(A18)

When the circuit configuration gives rise to a reflected signal
at the input port, a null in this reflected signal is obtained when

. This obviously does not apply to the so-called
unit transmittance circuits [6], such as a cascaded circuit built
with, e.g., two forward couplers, since in these configurations
there is no reflected signal under ideal conditions. In contrast,
a null in the output intensity requires that . For
feedback-assisted four-ports, is given in (22).
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